학술논문

Hunting archer fish match their take-off speed to distance from the future point of catch
Document Type
Author Abstract
Source
Journal of Experimental Biology. Jan, 2006, Vol. 209 Issue 1, p141, 11 p.
Subject
Fishes -- Food and nutrition
Fishes -- Behavior
Foraging -- Research
Language
English
ISSN
0022-0949
Abstract
Archer fish can shoot down insect prey with a sharp jet of water. Fish usually fire from positions that are not directly below their target so that a dislodged insect falls ballistically with a horizontal velocity component. Only 100 ms after the insect is on its path both the shooter and other school members can initiate a rapid turn and then head straight in the direction of the later point of impact of their falling prey. The quick turn and subsequent takeoff are performed 'open-loop', based on the initial values of the falling insect's motion. We report here that archer fish can not only take off in the direction of the later point of impact but also predict its distance. Distance information allows the fish to adjust their take-off speed so that they would arrive within a narrow time slot slightly (about 50ms) after their prey's impact, despite large differences in the size of the aligning turn and in the distance to be covered. Selecting a constant speed program with matched speed and catching the insect on the move minimizes frictional losses. The initial speed of starting fish is slightly but systematically too slow and is increased later so that the fish arrive 20 ms earlier than expected and often make the catch on a higher than take-off speed. The variability of later speed changes suggests a systematic 'error' in the take-off, as if the fish underestimated distance. However, this apparent deficiency seems well adapted to the fish catching their prey at a high speed: if later the fish had no possibility to correct an initial error then it is better to start slightly too slow in order to minimize the risk of overshooting the point of catch. Key words: prediction, motor planning, open-loop start, animal cognition, archer fish.