학술논문

Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart
Document Type
Report
Source
Journal of Clinical Investigation. May, 2018, Vol. 128 Issue 5, p2127, 17 p.
Subject
Heart attack -- Complications and side effects
Cell differentiation -- Research
Cytological research
Medical research
Cicatrices -- Development and progression
Fibroblasts -- Physiological aspects -- Health aspects
Health care industry
Language
English
ISSN
0021-9738
Abstract
Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle [alpha]-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle [alpha]-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar.
Introduction Fibroblasts are a unique cell type of mesenchymal origin that are present in essentially all tissues and organs, where they regulate extracellular matrix (ECM) production and acute wound healing [...]