학술논문

The atmospheric bridge communicated the [delta].sup.13C decline during the last deglaciation to the global upper ocean
Document Type
Academic Journal
Source
Climate of the Past. July 19, 2021, Vol. 17 Issue 4, 1507
Subject
Ocean
Environmental issues
Language
English
ISSN
1814-9332
Abstract
During the early part of the last glacial termination (17.2-15 ka) and coincident with a â¼35 ppm rise in atmospheric CO.sub.2, a sharp 0.30/00-0.40/00 decline in atmospheric [delta].sup.13 CO.sub.2 occurred, potentially constraining the key processes that account for the early deglacial CO.sub.2 rise. A comparable [delta].sup.13 C decline has also been documented in numerous marine proxy records from surface and thermocline-dwelling planktic foraminifera. The [delta].sup.13 C decline recorded in planktic foraminifera has previously been attributed to the release of respired carbon from the deep ocean that was subsequently transported within the upper ocean to sites where the signal was recorded (and then ultimately transferred to the atmosphere). Benthic [delta].sup.13 C records from the global upper ocean, including a new record presented here from the tropical Pacific, also document this distinct early deglacial [delta].sup.13 C decline. Here we present modeling evidence to show that rather than respired carbon from the deep ocean propagating directly to the upper ocean prior to reaching the atmosphere, the carbon would have first upwelled to the surface in the Southern Ocean where it would have entered the atmosphere. In this way the transmission of isotopically light carbon to the global upper ocean was analogous to the ongoing ocean invasion of fossil fuel CO.sub.2 . The model results suggest that thermocline waters throughout the ocean and 500-2000 m water depths were affected by this atmospheric bridge during the early deglaciation.
Byline: Jun Shao, Lowell D. Stott, Laurie Menviel, Andy Ridgwell, Malin Ödalen, Mayhar Mohtadi To access, purchase, authenticate, or subscribe to the full-text of this article, please visit this link: [...]