학술논문

Differential Regulation of RGS-2 by Constant and Oscillating PTH Concentrations
Document Type
Report
Source
Calcified Tissue International. April, 2009, Vol. 84 Issue 4, p305, 8 p.
Subject
Messenger RNA
Ribonuclease
Peptides
Parathyroid hormone
Language
English
ISSN
0171-967X
Abstract
PTH has diverse effects on bone metabolism: anabolic when given intermittently, catabolic when given continuously. The cellular mechanisms underlying the varying target cell response are not clear yet. PTH induces RGS-2, a member of the Regulator of G-protein Signaling protein family, via cAMP/PKA, and inactivates PKC-mediated signaling. To investigate intracellular signaling pathways with different PTH concentration-time patterns, we treated UMR 106-01 osteoblast-like cells in a perfusion system. PTH was administered intermittently (4 min/h, 10.sup.-7 M) or continuously at an equivalent cumulative dose (6.6 x 10.sup.-9 M). cAMP was measured using radioimmunoassay, mRNA levels using real-time rtPCR and ribonuclease protection assay, and protein levels using Western immunoblotting. A single PTH pulse transiently increased cAMP levels by 2000% +- 1200%. In contrast to continuous PTH exposure, cAMP induction remained unchanged with intermittent PTH, ruling out desensitization of the PTH receptor. In continuously perfused cells, RGS-2 abundance was three to five times higher than in cells intermittently exposed to PTH for up to 12 h. MKP-1 and -3 were significantly less induced with pulsatile PTH exposure-mode-dependent differences in MMP-13 and IGFBP-5 were small. Pulsatile but not continuous PTH administration prevents PTHrP receptor desensitization and accumulation of RGS-2 in osteoblasts, which should preserve PKC-dependent signaling.