학술논문

Methionine Deficiency and Hepatic Injury in a Dietary Steatohepatitis Model
Document Type
Report
Author abstract
Source
Digestive Diseases and Sciences. March, 2008, Vol. 53 Issue 3, p767, 10 p.
Subject
Glutathione -- Analysis
Glutathione -- Physiological aspects
Methionine -- Analysis
Methionine -- Physiological aspects
Language
English
ISSN
0163-2116
Abstract
Methionine (Meth) is an essential amino acid involved in DNA methylation and glutathione biosynthesis. We examined the effect of Meth on the development of steatohepatitis. Rats were fed (five weeks) amino acid-based Meth-choline-sufficient (A-MCS) or total deficient (MCD) diets and gavaged daily (two weeks) with vehicle (B-vehicle/MCD), or Meth replacement (C-Meth/MCD). To assess the effect of short-term deficiency, after three weeks one MCS group was fed a deficient diet (D-MCS/MCD). Animals fed the deficient diet for two weeks lost (29%) weight and after five weeks weighed one third as much as those on the sufficient diet, and also developed anemia (P < 0.01). Hepatic transaminases progressively increased from two to five weeks (P < 0.01), leading to severe hepatic pathology. Meth administration normalized hematocrit, improved weight (P < 0.05), and suppressed abnormal enzymes activities (P < 0.01). Meth administration improved blood and hepatic glutathione (GSH), S-adenosylmethionine (SAMe), and hepatic lesions (P < 0.01). The deficient diet significantly upregulated proinflammatory and fibrotic genes, which was ameliorated by Meth administration. These data support a pivotal role for methionine in the pathogenesis of the dietary model of Meth-choline-deficient (MCD) steatohepatitis (NASH).