학술논문

Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior
Document Type
Report
Source
Nature Neuroscience. November 2016, Vol. 19 Issue 11, p1497, 9 p.
Subject
United States
Language
English
ISSN
1097-6256
Abstract
Author(s): Alexi Nott (corresponding author) [1, 2]; Jemmie Cheng [1, 2]; Fan Gao [1, 2]; Yuan-Ta Lin [1, 2]; Elizabeta Gjoneska [1, 2, 3]; Tak Ko [1, 2]; Paras Minhas [...]
Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). The RTT missense MECP2[sup.R306C] mutation prevents MeCP2 from interacting with the NCoR/histone deacetylase 3 (HDAC3) complex; however, the neuronal function of HDAC3 is incompletely understood. We found that neuronal deletion of Hdac3 in mice elicited abnormal locomotor coordination, sociability and cognition. Transcriptional and chromatin profiling revealed that HDAC3 positively regulated a subset of genes and was recruited to active gene promoters via MeCP2. HDAC3-associated promoters were enriched for the FOXO transcription factors, and FOXO acetylation was elevated in Hdac3 knockout (KO) and Mecp2 KO neurons. Human RTT-patient-derived MECP2[sup.R306C] neural progenitor cells had deficits in HDAC3 and FOXO recruitment and gene expression. Gene editing of MECP2[sup.R306C] cells to generate isogenic controls rescued HDAC3-FOXO-mediated impairments in gene expression. Our data suggest that HDAC3 interaction with MeCP2 positively regulates a subset of neuronal genes through FOXO deacetylation, and disruption of HDAC3 contributes to cognitive and social impairment.