학술논문

X-box binding protein 1 is essential for insulin regulation of pancreatic α-cell function
Document Type
Report
Source
Diabetes. July 1, 2013, Vol. 62 Issue 7, p2439, 11 p.
Subject
United States
Language
English
ISSN
0012-1797
Abstract
Patients with type 2 diabetes (T2D) often exhibit hyperglucagonemia despite hyperglycemia, implicating defective α-cell function. Although endoplasmic reticulum (ER) stress has been suggested to underlie β-cell dysfunction in T2D, its role in α-cell biology remains unclear. X-box binding protein 1 (XBP1) is a transcription factor that plays a crucial role in the unfolded protein response (UPR), and its deficiency in β-cells has been reported to impair insulin secretion, leading to glucose intolerance. To evaluate the role of XBP1 in α-cells, we created complementary in vivo (α-cell-specific XBP1 knockout [αXBPKO] mice) and in vitro (stable XBP1 knockdown α-cell line [αXBPKD]) models. The αXBPKO mice exhibited glucose intolerance, mild insulin resistance, and an inability to suppress glucagon secretion after glucose stimulation. αXBPKD cells exhibited activation of inositol-requiring enzyme 1, an upstream activator of XBP1, leading to phosphorylation of Jun N[H.sub.2]-terminal kinase. Interestingly, insulin treatment of αXBPKD cells reduced tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) (p[Y.sup.896]) and phosphorylation of Akt while enhancing serine phosphorylation (p[S.sup.307]) of IRS1. Consequently, the αXBPKD cells exhibited blunted suppression of glucagon secretion after insulin treatment in the presence of high glucose. Together, these data indicate that XBP1 deficiency in pancreatic α-cells induces altered insulin signaling and dysfunctional glucagon secretion.
In addition to the defects in β-cell secretory function and reduced β-cell mass, patients with type 2 diabetes (T2D) frequently manifest hyperglucagonemia that contributes to uncontrolled hyperglycemia (1-3). Although it [...]