학술논문

Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2
Document Type
TEXT
Source
Physiological research | 2012 Volume:61 | Number:1
Subject
Fyziologie člověka a srovnávací fyziologie
fyziologie člověka
human physiology
mast cell
degranulation
TRPV
physical stimuli
14
612
Language
English
Abstract
D. Zhang ... [et al.].
Obsahuje seznam literatury
A characteristic of mast cells is the degranulation in response to various stimuli. Here we have investigated the effects of various physical stimuli in the human mast-cell line HMC-1. We have shown that HMC-1 express the transient receptor potential channels TRPV1, TRPV2 and TRPV4. In the whole-cell patchclamp configuration, increasing mechanical stress applied to the mast cell by hydrostatic pressure (–30 to –90 cm H2 O applied via the patch pipette) induced a current that could be inhibited by 10 µM of ruthenium red. This current was also inhibited by 20 µM SKF96365, an inhibitor that is among TRPV channels specific for the TRPV2. A characteristic of TRPV2 is its activation by high noxious temperature; temperatures exceeding 50 °C induced a similar ruthenium-red-sensitive current. As another physical stimulus, we applied laser light of 640 nm. Here we have shown for the first time that the application of light (at 48 mW for 20 min) induced an SKF96365-sensitive current. All three physical stimuli that led to activation of SKF96365-sensitive current also induced pronounced degranulation in the mast cells, which could be blocked by ruthenium red or SKF96365. The results suggest that TRPV2 is activated by the three different types of physical stimuli. Activation of TRPV2 allows Ca2+ ions to enter the cell, which in turn will induce degranulation. We, therefore, suggest that TRPV2 plays a key role in mast-cell degranulation in response to mechanical, heat and red laser-light stimulation.