학술논문

Design and motion analysis of double quadrilateral mobile mechanism
Document Type
JOURNAL
Source
Industrial Robot: the international journal of robotics research and application, 2022, Vol. 49, Issue 6, pp. 1256-1269.
Subject
research-article
Research paper
cat-ENGG
Engineering
Industrial engineering
design & manufacturing
Kinematics analysis
Obstacle-climbing
Mobile mechanism
Multi-modes
Tracked rolling
Language
English
ISSN
0143-991X
Abstract
Purpose The purpose of this paper is to propose an overall deformation rolling mechanism based on double four-link mechanism. The double quadrilateral mobile mechanism (DQMM) has two switchable working modes which can be used to traverse different terrains or climb over obstacles. Design/methodology/approach The main body of the DQMM is composed of a double four-link mechanism which sharing a public link and two symmetrical steering platforms which placed at both ends of the four-link mechanism. The steering platforms give the DQMM not only steering ability but also reconnaissance ability which can be achieved by carrying sensors such as cameras on steering platforms. By controlling the deformation of the DQMM, it can switch between two working modes (tracked rolling mode and obstacle-climbing mode) to achieve the functions of rolling and obstacle-climbing. Dynamic simulation model was established to verify the feasibility. Findings Based on the kinematics analysis and simulation results of the DQMM, its moving function is realized by the tracked rolling mode, and the obstacle-climbing mode is used to climb over obstacles in structured terrains such as continuous stairs. The feasibility of the two working modes is verified on a physical prototype. Originality/value The work of this paper is a new exploration of applying “overall closed moving linkages mechanism” to the area of small mobile mechanisms. The adaptability of different terrains and the ability of obstacle-climbing are improved by the combination of multi-modes.