학술논문

A new approach to bypass wire crossing problem in QCA nano technology
Document Type
JOURNAL
Source
Circuit World, 2021, Vol. 49, Issue 2, pp. 145-152.
Subject
research-article
Research paper
cat-ENGG
Engineering
cat-EEE
Electrical & electronic engineering
Circuit simulation
QCA technology
Nanoelectronic circuit
QCADesigner
Wire crossing
Language
English
ISSN
0305-6120
Abstract
Purpose This study aims to replace current multi-layer and coplanar wire crossing methods in QCA technology to avoid fabrication difficulties caused by them. Design/methodology/approach Quantum-dot cellular automata (QCA) is one of the newly emerging nanoelectronics technology tools that is proposed as a good replacement for complementary metal oxide semiconductor (CMOS) technology. This technology has many challenges, among them being component interconnection and signal routing. This paper will propose a new wire crossing method to enhance layout use in a single layer. The presented method depends on the central cell clock phase to enable two signals to cross over without interference. QCADesigner software is used to simulate a full adder circuit designed with the proposed wire crossing method to be used as a benchmark for further analysis of the presented wire crossing approach. QCAPro software is used for power dissipation analysis of the proposed adder. Findings A new cost function is presented in this paper to draw attention to the fabrication difficulties of the technology when designing QCA circuits. This function is applied to the selected benchmark circuit, and the results show good performance of the proposed method compared to others. The improvement is around 59, 33 and 75% compared to the best reported multi-layer wire crossing, coplanar wire crossing and logical crossing, respectively. The power dissipation analysis shows that the proposed method does not cause any extra power consumption in the circuit. Originality/value In this paper, a new approach is developed to bypass the wire crossing problem in the QCA technique.