학술논문

A Critical Survey of Deconvolution Methods for Separating Cell Types in Complex Tissues
Document Type
Periodical
Source
Proceedings of the IEEE Proc. IEEE Proceedings of the IEEE. 105(2):340-366 Feb, 2017
Subject
General Topics for Engineers
Engineering Profession
Aerospace
Bioengineering
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Geoscience
Nuclear Engineering
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Power, Energy and Industry Applications
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Deconvolution
Proteins
Gene expression
Tumors
Biological tissues
Filtering
Linear regression
feature selection
gene expression
linear regression
loss function
range filtering
regularization
Language
ISSN
0018-9219
1558-2256
Abstract
Identifying properties and concentrations of components from an observed mixture, known as deconvolution, is a fundamental problem in signal processing. It has diverse applications in fields ranging from hyperspectral imaging to noise cancellation in audio recordings. This paper focuses on in-silico deconvolution of signals associated with complex tissues into their constitutive cell-type-specific components and a quantitative characterization of the cell types. Deconvolving mixed tissues/cell types is useful in the removal of contaminants (e.g., surrounding cells) from tumor biopsies, as well as in monitoring changes in the cell population in response to treatment or infection. In these contexts, the observed signal from the mixture of cell types is assumed to be a convolution, using a linear instantaneous (LI) mixing process, of the expression levels of genes in constitutive cell types. The goal is to use known signals corresponding to individual cell types and a model of the mixing process to cast the deconvolution problem as a suitable optimization problem. In this paper, we present a survey and in-depth analysis of models, methods, and assumptions underlying deconvolution techniques. We investigate the choice of the different loss functions for evaluating estimation error, constraints on solutions, preprocessing and data filtering, feature selection, and regularization to enhance the quality of solutions and the impact of these choices on the performance of commonly used regression-based methods for deconvolution. We assess different combinations of these factors and use detailed statistical measures to evaluate their effectiveness. Some of these combinations have been proposed in the literature, whereas others represent novel algorithmic choices for deconvolution. We identify shortcomings of current methods and avenues for further investigation. For many of the identified shortcomings, such as normalization issues and data filtering, we provide new solutions. We summarize our findings in a prescriptive step-by-step process, which can be applied to a wide range of deconvolution problems.