학술논문

Scintillating Fiber Devices for Particle Therapy Applications
Document Type
Periodical
Source
IEEE Transactions on Nuclear Science IEEE Trans. Nucl. Sci. Nuclear Science, IEEE Transactions on. 65(8):2054-2060 Aug, 2018
Subject
Nuclear Engineering
Bioengineering
Ion beams
Monitoring
Neutrons
Particle tracking
Medical treatment
Charged particle tracker
neutron tracker
particle therapy
range monitoring
Language
ISSN
0018-9499
1558-1578
Abstract
Particle therapy (PT) is a radiation therapy technique in which solid tumors are treated with charged ions and exploits the achievable highly localized dose delivery, allowing to spare healthy tissues and organs at risk. The development of a range monitoring technique to be used online, during the treatment, capable to reach millimetric precision is considered one of the important steps toward an optimization of the PT efficacy and of the treatment quality. To this aim, charged secondary particles produced in the nuclear interactions between the beam particles and the patient tissues can be exploited. Besides charged secondaries, neutrons are also produced in nuclear interactions. The secondary neutron component might cause an undesired and not negligible dose deposition far away from the tumor region, enhancing the risk of secondary malignant neoplasms that can develop even years after the treatment. An accurate neutron characterization (flux, energy and emission profile) is, hence, needed for a better evaluation of long-term complications. In this contribution, two tracker detectors, both based on scintillating fibers, are presented. The first one, named dose profiler (DP), is planned to be used as a beam range monitor in PT treatments with heavy ion beams, exploiting the charged secondary fragments production. The DP is currently under development within the Innovative Solutions for In-Beam DosimEtry in Hadrontherapy project. The second one is dedicated to the measurement of the fast and ultrafast neutron component produced in PT treatments, in the framework of the monitor for neutron dose in hadrontherapy project. Results of the first calibration tests performed at the Trento Protontherapy Center and at Centro Nazionale di Adroterapia Oncologica (Italy) are reported, as well as simulation studies.