학술논문

Accurate Detection of Non-Proliferative Diabetic Retinopathy in Optical Coherence Tomography Images Using Convolutional Neural Networks
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:34387-34397 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Retina
Feature extraction
Diabetes
Biomedical imaging
Image segmentation
Optical coherence tomography
Diseases
Convolutional neural network (CNN)
diabetic retinopathy (DR)
optical coherence tomography (OCT)
Language
ISSN
2169-3536
Abstract
Diabetic retinopathy (DR) is a disease that forms as a complication of diabetes. It is particularly dangerous since it often goes unnoticed and can lead to blindness if not detected early. Despite the clear importance and urgency of such an illness, there is no precise system for the early detection of DR so far. Fortunately, such system could be achieved using deep learning including convolutional neural networks (CNNs), which gained momentum in the field of medical imaging due to its capability of being effectively integrated into various systems in a manner that significantly improves the performance. This paper proposes a computer aided diagnostic (CAD) system for the early detection of non-proliferative DR (NPDR) using CNNs. The proposed system is developed for the optical coherence tomography (OCT) imaging modality. Throughout this paper, all aspects of deployment of the proposed system are studied starting from the preprocessing stage required to extract input retina patches to train the CNN without resizing the image, to the use of transfer learning principals and how to effectively combine features in order to optimize performance. This is done through investigating several scenarios for the system setup and then selecting the best one, which from the results revealed to be a two pre-trained CNNs based system, in which one of these CNNs is independently fed by nasal retina patches and the other one by temporal retina patches. The proposed transfer learning based CAD system achieves a promising accuracy of 94%.