학술논문

Identification Codes: A Topical Review With Design Guidelines for Practical Systems
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:14961-14982 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Codes
Block codes
Error probability
Symbols
Wireless communication
Reed-Solomon codes
Object recognition
Beyond-Shannon communication
error probability
false-positive identification
goal-oriented communication
linear block code
identity verification
performance metrics
Language
ISSN
2169-3536
Abstract
A wide range of information technology applications require the identification of a particular message or label that represents the identity of an object at a distance, e.g., over a wireless channel. Conventionally, the underlying information that represents the identity is transmitted over the channel, following the information-theoretic concept of message transmission. If the purpose of the interaction over the channel is only to verify (match) an identity, then the concept of identification over channels—utilizing the identification codes that have been developed by the information theory community—can provide an exponential efficiency gain over message transmission. This topical review article conducts for the first time a comprehensive detailed evaluation of the existing identification codes for the practically relevant regime of finite parameters. We examine essentially all published identification codes, including codes based on inner constant weight codes that are concatenated with outer linear block codes, such as Reed-Solomon and Reed-Muller codes. Specifically, we conduct a holistic identification code comparison based on the logarithm of the number of representable identities (in shannon), the size (in bit) of the transmitted cue that represents an identity, and the corresponding type II error probability bound for essentially all existing identification codes. Based on the resulting insights, we formulate guidelines for the design of practical (finite-parameter) identification codes. For instance, we find that a linear block code (without concatenation with a sophisticated inner constant-weight code) is sufficient for most practical identification code usages.