학술논문

A Comprehensive Kinetical Modeling of Polymorphic Phase Distribution of Ferroelectric-Dielectrics and Interfacial Energy Effects on Negative Capacitance FETs
Document Type
Conference
Source
2019 Symposium on VLSI Technology VLSI Technology, 2019 Symposium on. :T222-T223 Jun, 2019
Subject
Bioengineering
Computing and Processing
Photonics and Electrooptics
Power, Energy and Industry Applications
Iron
Grain size
Tin
Cooling
Stress
Logic gates
Predictive models
Language
ISSN
2158-9682
Abstract
This paper clarifies for the first time the origin of ferroelectricity in the Negative Capacitance Field-Effect Transistors (NCFETs) by molecular dynamics (MD) simulation. MD simulation considering atomic interactions between all atoms enables accurate predictions for the microstructure even at all interfaces. By incorporating the results from MD simulations into a kinetic model, it is able to predict the conditions of crystallization and phase transition during RTP and cooling processes that govern ferroelectricity in FETs. Our simulation reveals that the comparable interfacial energy between o-and t-phase, and in-plane tensile stress from metal capping or interfacial layers (ILs) enable more phase transition from t-to o-phase, and more ferroelectricity in NCFETs. Finally, design methodology to maintain the electric variation of NCFETs is also proposed