학술논문

Explainable Prediction of Acute Myocardial Infarction Using Machine Learning and Shapley Values
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:210410-210417 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Electrocardiography
Myocardium
Machine learning
Predictive models
Databases
Training
Feature extraction
biomedical informatics
predictive models
acute myocardial infarction
Language
ISSN
2169-3536
Abstract
The early and accurate detection of the onset of acute myocardial infarction (AMI) is imperative for the timely provision of medical intervention and the reduction of its mortality rate. Machine learning techniques have demonstrated great potential in aiding disease diagnosis. In this paper, we present a framework to predict the onset of AMI using 713,447 extracted ECG samples and associated auxiliary data from the longitudinal and comprehensive ECG-ViEW II database, previously unexplored in the field of machine learning in healthcare. The framework is realized with two deep learning models, a convolutional neural network (CNN) and a recurrent neural network (RNN), and a decision-tree based model, XGBoost. Synthetic minority oversampling technique (SMOTE) was utilized to address class imbalance. High prediction accuracy of 89.9%, 84.6%, 97.5% and ROC curve areas of 90.7%, 82.9%, 96.5% have been achieved for the best CNN, RNN, and XGBoost models, respectively. Shapley values were utilized to identify the features that contributed most to the classification decision with XGBoost, demonstrating the high impact of auxiliary inputs such as age and sex. This paper demonstrates the promising application of explainable machine learning in the field of cardiovascular disease prediction.