학술논문

On the Efficiency of Pairing-Based Authentication for Connected Vehicles: Time is Not on Our Side!
Document Type
Periodical
Source
IEEE Transactions on Information Forensics and Security IEEE Trans.Inform.Forensic Secur. Information Forensics and Security, IEEE Transactions on. 16:3678-3693 2021
Subject
Signal Processing and Analysis
Computing and Processing
Communication, Networking and Broadcast Technologies
Authentication
Cryptography
Safety
Elliptic curves
Vehicular ad hoc networks
Digital signatures
Australia
authentication
vehicular communication systems
scalability
efficiency
Language
ISSN
1556-6013
1556-6021
Abstract
In the near future, intelligent vehicles will be connected via wireless communication links, forming Vehicular Ad-hoc Networks (VANETs). This has potential to improve road safety and to optimize traffic. However, if the communications are not secure, VANETs are vulnerable to cyber attacks involving message manipulation. Research on this problem has produced multiple authentication protocols based on bilinear pairings (a variant of elliptic curve cryptography). The efficiency of such authentication schemes must be addressed before they can be used in real-world deployments. Standards bodies have begun standardizing various pairing-based schemes. The IEEE 1609.2 security standard has not yet selected any pairing-based scheme, leaving the settings related to pairing-based cryptography in the vehicular environments unspecified. In this work, we investigate the efficiency of pairing-based cryptographic primitives over the Barreto-Lynn-Scott and Barreto-Naehrig pairing friendly elliptic curves recommended in the IETF and ISO standards, to determine their suitability for practical application. We implement the algorithms and evaluate the effect of cryptographic pairings using theoretical and experimental analysis of four well-known pairing-based short signature schemes, including: Boneh-Lynn-Shacham, Boneh-Boyen, Zhang-Safavi-Susilo, and Boneh-Gentry-Lynn-Shacham. We use metrics including CPU clock cycles per operation, average computation time in milliseconds, and signature/public key size in bits to estimate the cost of implementing cryptographic pairings on modern processors. We demonstrate the effect of pairing-based cryptography on authentication in vehicular networks. We investigate a high-density highway scenario and show that a crash is possible, as a result of the evaluated authentication delay. We share our findings ahead of the IEEE 1609.2 recommendations for the use of cryptographic pairings.