학술논문

FFRP: Dynamic Firefly Mating Optimization Inspired Energy Efficient Routing Protocol for Internet of Underwater Wireless Sensor Networks
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:39587-39604 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Routing
Reliability
Routing protocols
Energy consumption
Optimization
Monitoring
Throughput
Internet of Underwater Things
bio-inspired routing
firefly mating optimization
underwater wireless sensor network
routing protocol
Language
ISSN
2169-3536
Abstract
Energy-efficient and reliable data gathering using highly stable links in underwater wireless sensor networks (UWSNs) is challenging because of time and location-dependent communication characteristics of the acoustic channel. In this paper, we propose a novel dynamic firefly mating optimization inspired routing scheme called FFRP for the internet of UWSNs-based events monitoring applications. The proposed FFRP scheme during the events data gathering employs a self-learning based dynamic firefly mating optimization intelligence to find the highly stable and reliable routing paths to route packets around connectivity voids and shadow zones in UWSNs. The proposed scheme during conveying information minimizes the high energy consumption and latency issues by balancing the data traffic load evenly in a large-scale network. In additions, the data transmission over highly stable links between acoustic nodes increases the overall packets delivery ratio and network throughput in UWSNs. Several simulation experiments are carried out to verify the effectiveness of the proposed scheme against the existing schemes through NS2 and AquaSim 2.0 in UWSNs. The experimental outcomes show the better performance of the developed protocol in terms of high packets delivery ratio (PDR) and network throughput (NT) with low latency and energy consumption (EC) compared to existing routing protocols in UWSNs.