학술논문

Performance and Reliability of ${\rm Gd}_{2}{\rm O}_{3}$ and Stacked ${\rm Gd}_{2}{\rm O}_{3}\hbox{-}{\rm Eu}_{2}{\rm O}_{3}$ Metal-Insulator-Metal Capacitors
Document Type
Periodical
Source
IEEE Transactions on Electron Devices IEEE Trans. Electron Devices Electron Devices, IEEE Transactions on. 60(5):1523-1528 May, 2013
Subject
Components, Circuits, Devices and Systems
Engineered Materials, Dielectrics and Plasmas
Capacitors
Capacitance
Stress
MIM capacitors
Leakage current
Reliability
%24{%5Crm+Eu}%5F{2}{%5Crm+O}%5F{3}%24<%2Ftex><%2Fformula>%22">${\rm Eu}_{2}{\rm O}_{3}$
%24{%5Crm+Gd}%5F{2}{%5Crm+O}%5F{3}%24<%2Ftex><%2Fformula>%22">${\rm Gd}_{2}{\rm O}_{3}$
constant current stress (CCS)
constant voltage stress (CVS)
metal-insulator-metal (MIM)
reliability
voltage coefficient of capacitance (VCC)
Language
ISSN
0018-9383
1557-9646
Abstract
${\rm Gd}_{2}{\rm O}_{3}$-based metal-insulator-metal capacitors have been characterized with single layer $({\rm Gd}_{2}{\rm O}_{3})$ and bilayer (${\rm Gd}_{2}{\rm O}_{3}/{\rm Eu}_{2}{\rm O}_{3}$ and ${\rm Eu}_{2}{\rm O}_{3}/{\rm Gd}_{2}{\rm O}_{3}$) stacks for analog and DRAM applications. Although single layer ${\rm Gd}_{2}{\rm O}_{3}$ capacitors provide highest capacitance density (15 ${\rm fF}/\mu{\rm m}^{2}$), they suffer from high leakage current density, poor capacitance density-voltage linearity, and reliability. The stacked dielectrics help to reduce leakage current density ($1.2\times 10^{-5}~{\rm A/cm}^{2}$ and $2.7\times 10^{-5}~{\rm A/cm}^{2}$ for ${\rm Gd}_{2}{\rm O}_{3}/{\rm Eu}_{2}{\rm O}_{3}$ and ${\rm Eu}_{2}{\rm O}_{3}/{\rm Gd}_{2}{\rm O}_{3}$, respectively, at ${-}{\rm 1}~{\rm V}$), improve quadratic voltage coefficient of capacitance (331 ${\rm ppm/V}^{2}$ and 374 ${\rm ppm/V}^{2}$ for ${\rm Gd}_{2}{\rm O}_{3}/{\rm Eu}_{2}{\rm O}_{3}$ and ${\rm Eu}_{2}{\rm O}_{3}/{\rm Gd}_{2}{\rm O}_{3}$ , respectively, at 1 MHz), and improve reliability, with a marginal reduction in capacitance density. This is attributed to lower trap heights as determined from Poole–Frenkel conduction mechanism, and lower defect density as determined from electrode polarization model.