학술논문

Soiling particle interactions on PV modules: Surface and inter-particle adhesion and chemistry effects
Document Type
Conference
Source
2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd. :1714-1717 Jun, 2016
Subject
Aerospace
Components, Circuits, Devices and Systems
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
Photonics and Electrooptics
Power, Energy and Industry Applications
Adhesives
Surface morphology
Chemistry
Force
Atmospheric measurements
Particle measurements
Glass
Language
Abstract
The understanding of the fundamental physics and chemistry of dust and the interaction of these soiling fragments with the PV module surface and each other is potentially important to developing viable mitigation approaches. This paper builds on our previous reports and observations investigating individual soiling particle adhesion on PV module glass using microscale proximal probe techniques. Specifically, in this presentation we report on the refinement of those adhesive force measurements by gaining and including information on the contact area of those particles with the surface, the specific chemistry of interactive surfaces, and the quantification of the force values using materials standard. We also investigate the adhesive forces holding the soiling particles together and the effects of the critical parameters of surface compositional properties, moisture (humidity), and hydrocarbons. This allows for the comparisons of the inter-particle adhesion to the adhesive force holding the particle to the glass module surface. These evaluations are performed on soiling particles collected from operating modules in differing climate zones in Brazil and Middle-East Gulf regions.