학술논문

Light Scattering Characteristics of Interface Micro-Defects in Factory Joints of High-Voltage Submarine Cables
Document Type
Conference
Source
2022 7th Asia Conference on Power and Electrical Engineering (ACPEE) Power and Electrical Engineering (ACPEE), 2022 7th Asia Conference on. :970-975 Apr, 2022
Subject
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Underwater cables
Polyethylene
Scattering
Cable insulation
Optical variables control
Optical imaging
Production facilities
submarine cable joint
polymer interface defects
mie light scattering
waveband light
Language
Abstract
High-voltage submarine cable joint is fabricated by extrusion molding of crosslinked polyethylene materials, in which micrometer-scaled defects cannot be completely eliminated at cone-shaped interface (stress cone) between cable body and recovery insulation. Characterizing interface defects in stress cone area is of great significance to improve submarine cable manufacturing technology. This paper presents a new light-scattering scheme of scanning and detecting interface micro-defects of cable joints, which is suggested to be implemented in joint fabricating process just after factory insulation recovery and before outer shield-layer preparation. According to Mie light scattering theory, we calculate analytically the angle-resolved scattering characteristics of micro-void, water-bead, and antioxidant or carbide micro-particle in polyethylene medium for incident 632.8nm wavelength laser. Since micron-scaled particles scatter light waves into oscillatory characteristics of intensity amplitude due to optical interference, the integral or averaged intensity of the scattered light on a specific angular range should be taken as test signal with a high resolution for distinguishing size or optical properties of micro-defects in polyethylene material. Various micro-defects represent a high intensity in forward scattering, and the scattered intensity integration in 10~30° range increase monotonously with micro-defect enlargement. Especially, lateral scattering strength in 70~100° is remarkably sensitive to refractive index of micro-defects, as manifested by one-magnitude of differences in the averaged scattering intensity between micro-void and micro-antioxidant. It is well suggested that the ratio of scattering intensity integrals in 70~100° to 10~30° ranges can be exploited as a valid criterion for discriminating the species of micro-defects, which is expected to develop 632.8nm Helium-Neon laser scanning test systems of detecting micro-defects in submarine cable factory joints. We also calculate the angle-resolved spectra scattered by micro-defects from light sources of 450~550nm continuous waveband, which are smooth with the amplitude oscillation being significantly alleviated by intensity summation of incoherent waveband components. We suggest exploiting wavelength-averaged angle-resolved spectrum of incident waveband to form a high resolution contrast of scattering strengths, which promises competent applications for laser scanning microscopy or photonic dark-field imaging.