학술논문

Automated 3D Whole-Heart Mesh Reconstruction From 2D Cine MR Slices Using Statistical Shape Model
Document Type
Conference
Source
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Engineering in Medicine & Biology Society (EMBC), 2022 44th Annual International Conference of the IEEE. :1702-1706 Jul, 2022
Subject
Bioengineering
Heart
Solid modeling
Surface reconstruction
Three-dimensional displays
Shape
Biological system modeling
Computational modeling
3D cardiac mesh reconstruction
Whole heart reconstruction
Cine MRI
Biatrial reconstruction
Statistical shape model
Language
ISSN
2694-0604
Abstract
Cardiac magnetic resonance (CMR) imaging is the one of the gold standard imaging modalities for the diagnosis and characterization of cardiovascular diseases. The clinical cine protocol of the CMR typically generates high-resolution 2D images of heart tissues in a finite number of separated and independent 2D planes, which are appropriate for the 3D reconstruction of biventricular heart surfaces. However, they are usually inadequate for the whole-heart reconstruction, specifically for both atria. In this regard, the paper presents a novel approach for automated patient-specific 3D whole-heart mesh reconstruction from limited number of 2D cine CMR slices with the help of a statistical shape model (SSM). After extracting the heart contours from 2D cine slices, the SSM is first optimally fitted over the sparse heart contours in 3D space to provide the initial representation of the 3D whole-heart mesh, which is further deformed to minimize the distance from the heart contours for generating the final reconstructed mesh. The reconstruction performance of the proposed approach is evaluated on a cohort of 30 subjects randomly selected from the UK Biobank study, demonstrating the generation of high-quality 3D whole-heart meshes with average contours to surface distance less than the underlying image resolution and the clinical metrics within acceptable ranges reported in previous literature. Clinical Relevance- Automated patient-specific 3D whole-heart mesh reconstruction has numerous applications in car-diac diagnosis and multimodal visualization, including treatment planning, virtual surgery, and biomedical simulations.