학술논문

Real-Time Energy Harvesting Aided Scheduling in UAV-Assisted D2D Networks Relying on Deep Reinforcement Learning
Document Type
Periodical
Source
IEEE Access Access, IEEE. 9:3638-3648 2021
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Device-to-device communication
Resource management
Real-time systems
Energy harvesting
Reinforcement learning
Heuristic algorithms
Wireless networks
time scheduling
resource allocation
UAV-assisted D2D communications
deep reinforcement learning
Language
ISSN
2169-3536
Abstract
Unmanned aerial vehicle (UAV)-assisted device-to-device (D2D) communications can be deployed flexibly thanks to UAVs’ agility. By exploiting the direct D2D interaction supported by UAVs, both the user experience and network performance can be substantially enhanced at public events. However, the continuous moving of D2D users, limited energy and flying time of UAVs are impediments to their applications in real-time. To tackle this issue, we propose a novel model based on deep reinforcement learning in order to find the optimal solution for the energy-harvesting time scheduling in UAV-assisted D2D communications. To make the system model more realistic, we assume that the UAV flies around a central point, the D2D users move continuously with random walk model and the channel state information encountered during each time slot is randomly time-variant. Our numerical results demonstrate that the proposed schemes outperform the existing solutions. The associated energy efficiency game can be solved in less than one millisecond by an off-the-shelf processor using trained neural networks. Hence our deep reinforcement learning techniques are capable of solving real-time resource allocation problems in UAV-assisted wireless networks.