학술논문

Pr[m]: An Algorithm for Protein Motif Discovery
Document Type
Periodical
Source
IEEE/ACM Transactions on Computational Biology and Bioinformatics IEEE/ACM Trans. Comput. Biol. and Bioinf. Computational Biology and Bioinformatics, IEEE/ACM Transactions on. 19(1):585-592 Jan, 2022
Subject
Bioengineering
Computing and Processing
Tools
Bioinformatics
Protein sequence
Information technology
Silicon
Algorithm
k-mer search
motif pattern
protein motif
statistical significant
variable length motif
%2E<%2Fbold>%22">pattern discovery.
Language
ISSN
1545-5963
1557-9964
2374-0043
Abstract
Motifs are the evolutionarily conserved patterns which are reported to serve the crucial structural and functional role. Identification of motif patterns in a set of protein sequences has been a prime concern for researchers in computational biology. The discovery of such a protein motif using existing algorithms is purely based on the parameters derived from sequence composition and length. However, the discovery of variable length motif remains a challenging task, as it is not possible to determine the length of a motif in advance. In current work, a k-mer based motif discovery approach called Pr[m], is proposed for the detection of the statistically significant un-gapped motif patterns, with or without wildcard characters. In order to analyze the performance of the proposed approach, a comparative study was performed with MEME and GLAM2, which are two widely used non-discriminative methods for motif discovery. A set of 7,500 test dataset were used to compare the performance of the proposed tool and the ones mentioned above. Pr[m] outperformed the existing methods in terms of predictive quality and performance. The proposed approach is hosted at https://bioserver.iiita.ac.in/Pr[m].