학술논문

Substituting Convolutions for Neural Network Compression
Document Type
Periodical
Source
IEEE Access Access, IEEE. 9:83199-83213 2021
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Computer architecture
Neural networks
Transforms
Training
Tuning
Tensors
Technological innovation
Machine learning
deep neural networks
computer vision
DNN compression
Language
ISSN
2169-3536
Abstract
Many practitioners would like to deploy deep, convolutional neural networks in memory-limited scenarios, e.g., on an embedded device. However, with an abundance of compression techniques available it is not obvious how to proceed; many bring with them additional hyperparameter tuning, and are specific to particular network types. In this paper, we propose a simple compression technique that is general, easy to apply, and requires minimal tuning. Given a large, trained network, we propose (i) substituting its expensive convolutions with cheap alternatives, leaving the overall architecture unchanged; (ii) treating this new network as a student and training it with the original as a teacher through distillation. We demonstrate this approach separately for (i) networks predominantly consisting of full $3 \times 3$ convolutions and (ii) $1 \times 1$ or pointwise convolutions which together make up the vast majority of contemporary networks. We are able to leverage a number of methods that have been developed as efficient alternatives to fully-connected layers for pointwise substitution, allowing us provide Pareto-optimal benefits in efficiency/accuracy.