학술논문

Cytokeratin-Supervised Deep Learning for Automatic Recognition of Epithelial Cells in Breast Cancers Stained for ER, PR, and Ki-67
Document Type
Periodical
Source
IEEE Transactions on Medical Imaging IEEE Trans. Med. Imaging Medical Imaging, IEEE Transactions on. 39(2):534-542 Feb, 2020
Subject
Bioengineering
Computing and Processing
Training
Deep learning
Breast cancer
Tumors
Immune system
Indexes
Convolutional neural networks
image segmentation
breast cancer
histopathology
digital pathology
Language
ISSN
0278-0062
1558-254X
Abstract
Immunohistochemistry (IHC) of ER, PR, and Ki-67 are routinely used assays in breast cancer diagnostics. Determination of the proportion of stained cells (labeling index) should be restricted on malignant epithelial cells, carefully avoiding tumor infiltrating stroma and inflammatory cells. Here, we developed a deep learning based digital mask for automated epithelial cell detection using fluoro-chromogenic cytokeratin-Ki-67 double staining and sequential hematoxylin-IHC staining as training material. A partially pre-trained deep convolutional neural network was fine-tuned using image batches from 152 patient samples of invasive breast tumors. Validity of the trained digital epithelial cell masks was studied with 366 images captured from 98 unseen samples, by comparing the epithelial cell masks to cytokeratin images and by visual evaluation of the brightfield images performed by two pathologists. A good discrimination of epithelial cells was achieved (AUC of mean ROC = 0.93; defined as the area under mean receiver operating characteristics), and well in concordance with pathologists’ visual assessment (4.01/5 and 4.67/5). The effect of epithelial cell masking on the Ki-67 labeling index was substantial. 52 tumor images initially classified as low proliferation (Ki-67 < 14%) without epithelial cell masking were re-classified as high proliferation (Ki-67 ≥ 14%) after applying the deep learning based epithelial cell mask. The digital epithelial cell masks were found applicable also to IHC of ER and PR. We conclude that deep learning can be applied to detect carcinoma cells in breast cancer samples stained with conventional brightfield IHC.