학술논문

Multiobjective Model Predictive Control Based on Urban and Emission Macroscopic Fundamental Diagrams
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:52583-52602 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Urban areas
Roads
Traffic congestion
Computational modeling
Weight measurement
Vehicle dynamics
Traffic control
Carbon emissions
emission
traffic management
MFD
e-MFD
multiobjective model predictive control
route guidance
Language
ISSN
2169-3536
Abstract
Increasing motorization represents a severe problem worldwide, also affecting the emission levels of the road network. Accordingly, congestion management has obtained growing importance because of its strong economic, social, and environmental implications. Macroscopic Fundamental Diagram (MFD) based traffic control is a popular and efficient approach in this scientific field. In our research work the urban network has been divided into homogeneous regions, each of them characterized by its own MFD, and they are regulated using a network-level control scheme. The proposed Multiobjective Model Predictive Control (M-MPC) takes into account the congestion and $CO_{2}$ emission levels of the urban network, modelled by the emerging Emission Macroscopic Fundamental Diagram (e-MFD). The applied strategy has been demonstrated in a realistic traffic scenario (Luxembourg City) using validated microscopic traffic simulation. According to the introduced multiobjective approach, the control method can better exploit the road network capacity while efficiently reducing traffic-induced emissions.