학술논문

Optimization Method for Extracting Stabilizer Geometry and Properties of REBCO Tapes
Document Type
Periodical
Source
IEEE Transactions on Applied Superconductivity IEEE Trans. Appl. Supercond. Applied Superconductivity, IEEE Transactions on. 31(5):1-5 Aug, 2021
Subject
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Silver
Conductivity
Temperature measurement
Current measurement
Uncertainty
Voltage measurement
Analytical models
Finite element analysis
HTS
optimization
pulsed current measurements
REBCO
sensitivity
uncertainty
overcritical current
Language
ISSN
1051-8223
1558-2515
2378-7074
Abstract
A good knowledge of material properties is a critical aspect for modeling high-temperature superconductor (HTS) devices. However, the knowledge of the electrical resistivity of coated conductors above the critical current is limited. The major challenge in characterizing this regime lies in the fact that for $I>I_{\rm {c}}$, heating effects and thermal instabilities can quickly destroy the conductor if nothing is done to protect it. In previous work we extracted overcritical current data, obtained by combining fast pulsed current measurements with finite element analysis (Uniform Current (UC) model). In this work, we assessed the impact of the uncertainties of the input parameters on the quantities calculated with the UC model (temperature, current in each layer of the tape and resistivity of HTS). Firstly, sensitivity and uncertainty analyses were performed and it was found that the input parameters that mostly affect the accuracy of the UC model are the electrical resistivity and the thickness of the silver layer. Afterwards, an optimization method was developed to correctly estimate the geometry and the resistivity of the silver layer. This method combines experimental measurements of resistance $R(T)$ of the tape and pulsed current measurements. The development of this strategy allowed us to determine the parameters that significantly impact the results of the UC model and helped to minimize their uncertainties. This enables a more accurate estimation of the resistivity in the overcritical current regime.