학술논문

Toward Real-Time Pose Estimation of the Mitral Valve Robot Under C-Arm X-Ray Fluoroscopy
Document Type
Periodical
Source
IEEE Transactions on Medical Robotics and Bionics IEEE Trans. Med. Robot. Bionics Medical Robotics and Bionics, IEEE Transactions on. 3(4):928-935 Nov, 2021
Subject
Bioengineering
Robotics and Control Systems
Computing and Processing
Robots
Heart valves
Tracking
Real-time systems
Instruments
Pose estimation
C-arm X-ray fluoroscopy
mitral valve regurgitation
pose estimation
real-time tracking
tool segmentation
Language
ISSN
2576-3202
Abstract
Mitral regurgitation (MR) is a condition caused by a deformity in the mitral valve leading to the backflow of blood into the left atrium. MR can be treated through a minimally invasive procedure and our lab is currently developing a robot that could potentially be used to treat MR. The robot would carry a clip that latches onto the valve’s leaflets and closes them to minimize leakage. The robot’s accurate localization is needed to navigate the clip to the leaflets successfully. This paper discusses algorithms used to track the clip’s position and orientation under real-time using C-arm fluoroscopy. The positions are found through a deep learning semantic segmentation framework and the pose is found by calculating its bending and rotational angles. The robot’s bending angle and the clip’s rotational angle is found through an equivalent ellipse algorithm and an SVM classifier, respectively, and were validated by comparing orientations obtained from an electromagnetic tracker. The bending angle calculation has an average error of 7.7° and the rotational angle calculation is 76% for classifying them into five classes. Execution times are within 100ms and hence this could be a promising approach in real-time pose estimation.