학술논문

Smartphone-Based Digital Biomarkers for Parkinson’s Disease in a Remotely-Administered Setting
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:28361-28384 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Task analysis
Diseases
Feature extraction
Machine learning algorithms
Support vector machines
Medical diagnostic imaging
Biomarkers
Digital biomarkers
machine learning
Parkinson’s disease
smartphones
wearable devices
Language
ISSN
2169-3536
Abstract
Smartphone-based digital biomarker (DB) assessments provide objective measures of daily-life tasks and thus hold the promise to improve diagnosis and monitoring of Parkinson’s disease (PD). To date, little is known about which tasks perform best for these purposes and how different confounds including comorbidities, age and sex affect their accuracy. Here we systematically assess the ability of common self-administered smartphone-based tasks to differentiate PD patients and healthy controls (HC) with and without accounting for the above confounds. Using a large cohort of PD patients and healthy volunteers acquired in the mPower study, we extracted about 700 features commonly reported in previous PD studies for gait, balance, voice and tapping tasks. We perform a series of experiments systematically assessing the effects of age, sex and comorbidities on the accuracy of the above tasks for differentiation of PD patients and HC using several machine learning algorithms. When accounting for age, sex and comorbidities, the highest balanced accuracy on hold-out data (73%) was achieved using random forest when combining all tasks followed by tapping using relevance vector machine (67%). Only moderate accuracies were achieved for other tasks (60% for balance, 56% for gait and 53% for voice data). Not accounting for the confounders consistently yielded higher accuracies of up to 77% when combining all tasks. Our results demonstrate the importance of controlling DB data for age and comorbidities.