학술논문

Guest Editorial Model Predictive Control in Energy Conversion Systems
Document Type
Periodical
Source
IEEE Transactions on Energy Conversion IEEE Trans. Energy Convers. Energy Conversion, IEEE Transactions on. 36(2):1311-1312 Jun, 2021
Subject
Power, Energy and Industry Applications
Geoscience
Special issues and sections
Predictive control
Predictive models
Microgrids
Reluctance machines
Voltage control
Torque control
Phase modulation
Integrated circuit modeling
Language
ISSN
0885-8969
1558-0059
Abstract
The papers in this special section focus on model predictive control (MPC) in energy conversion systems. MPC refers to a broad range of control strategies that make explicit use of a model of the system/device to be controlled optimally. In order to obtain the optimal control signal (or sequence of control signals), MPC optimizes a certain cost function at regular intervals. Due to its unique capabilities to deal with constraints on actuators and system states as well as its theoretical basis, MPC has been widely received and successfully used for many decades, mostly for control of slow industrial plants. However, with continuous advances of control theory and increasing computational capabilities of modern microprocessors, this control strategy has recently became a technically feasible solution for control of energy conversion systems that operate at much faster times scales.