학술논문

A Systematic Literature Review on Security of Vehicular Ad-Hoc Network (VANET) Based on VEINS Framework
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:46218-46228 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Simulation
Vehicular ad hoc networks
Security
Databases
Taxonomy
Road traffic
Filtering
Data models
Vehicular ad-hoc network
SLR VEINS
VANET security
OMNeT++
VEINS framework
Language
ISSN
2169-3536
Abstract
Innovative framework on Vehicles in Network Simulation (VEINS) for Vehicular Ad-hoc Network (VANET) that use security aspect is mainly limited and dispersed. In order to offer valuable visions for technical settings and researchers, the study looked into the trends and gaps that were currently present. As a result, this systematic literature review was carried out to develop a comprehensive taxonomy of the research landscape. A thorough study was done for papers about (a) VANET, (b) VEINS, and (C) security aspects. This research used three databases, namely IEEE Xplore, ScienceDirect, and Scopus. These databases included in-depth research focused on VANET based on the VEINS framework. Then, on the basis of the security aspect, filtering was accomplished. The first class includes threats and vulnerabilities that evaluate the effects of threats and vulnerabilities on VANETs by using the VEINS framework and suggest ways to mitigate or lessen their effects. The second category includes articles on the solution technology that uses blockchain, machine learning, and Software-Defined Networking (SDN) techniques in VEINS-based VANET applications. The third class comprises the requirements that satisfy privacy, authentication, trust management, reliability, and revocation of the VANET security-based VEINS framework. Finally, this paper reviews the architecture and bidirectional coupling of the VEINS framework.