학술논문

Whole-Body Motion and Landing Force Control for Quadrupedal Stair Climbing
Document Type
Conference
Source
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Intelligent Robots and Systems (IROS), 2019 IEEE/RSJ International Conference on. :4746-4751 Nov, 2019
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Language
ISSN
2153-0866
Abstract
In this paper, we present a novel framework for quadrupedal stair climbing, which considers force interaction with stairs. For stable and robust climbing, a key issue is to avoid falling down on the stairs. From this point of view, control to minimize rate of change of angular momentum about Center of Mass (CoM) which is produced by ground reaction force (GRF) at contact of robot‘s foot is necessary. Using this approach, direct force-based Zero Moment Point (ZMP) for motion planning of the CoM and landing force control are implemented. The direct force-based ZMP method allows the robot to lift its foot with reduced possibility of tilting on the stairs, and the landing force control prevents instant increase of the moment by impact of the GRFs. In addition, terrain recognition to estimate parameters of the stairs and find proper footholds by vision system mounted on the robot is presented. Proposed framework is implemented to quadruped robot, AiDIN-VI, that has torque sensor at each joint, through experiments, capability of ascending several stairs including 3step stairs which have 21cm height (31% of its maximum leg length) and 26.5° inclination is validated.