학술논문

End-to-End Real-Time Service Provisioning Over a SDN-Controllable Analog mmWave Fiber -Wireless 5G X-Haul Network
Document Type
Periodical
Source
Journal of Lightwave Technology J. Lightwave Technol. Lightwave Technology, Journal of. 41(4):1104-1113 Feb, 2023
Subject
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Millimeter wave communication
Optical fiber networks
Real-time systems
5G mobile communication
Wireless communication
Streaming media
Optical fibers
5G/6G
analog radio-over-fiber
C-RAN
fiber-wireless
millimeter wave
silicon photonic ROADM
software defined network control
Language
ISSN
0733-8724
1558-2213
Abstract
The current work presents the first experimental demonstration of real-time Ethernet (ETH) trial services and 4K-Ultra High Definition (UHD) video application transmission over a 2λ Wavelength Division Multiplexing (WDM) analog Fiber-Wireless (FiWi) mmWave X-haul network, supporting dynamic flexible capacity allocation through an integrated silicon photonic Si 3 N 4 Reconfigurable Optical Add Drop Multiplexer (ROADM) and 60 GHz wireless transmission across a 7 m V-band link distance, while controlled by a Software Defined Network (SDN) controller based on Open Daylight. Analog X-haul transport of the radio signals is based on an Intermediate Frequency over Fiber (IFoF) scheme centered at 1.5 GHz using an Orthogonal Frequency Division Multiplexing (OFDM) radio-waveform with a bandwidth of 204 MHz, generated by a Field Programmable Gated Array (FPGA)-based RF System-on-Chip (SoC) processor that converts on-the-fly the real-time ETH downlink traffic to analog radio and vice-versa for the uplink. Dynamic allocation of the X-haul traffic capacity is handled through the use of the 802.1Q Virtual Local Area Network (VLAN) tag-mechanism, which controls the forwarding operation to the proper DAC and InP EML for optical modulation using Intensity Modulation/Direct Detection (IM/DD) schemes, while the wavelength routing operation is handled by the low-loss four-port Si 3 N 4 ROADM featuring only 2.5 dB fiber-to-fiber losses based on a cascaded MZI-interleaver design on the TriPleX platform, routing the real-time traffic to a second mmWave antenna site. Detailed measurements and traffic statistics indicate end-to-end latency of less than 260 μs and a packet loss less than 0.0054% across a dynamic range of at least 6.5 dB in the optical domain, while the high user bandwidth and signal quality are validated by an uninterrupted 4K-UHD video transmission across the FiWi X-haul mmWave transport network. The current work aims to shape a complete technology roadmap for Point-to-Multipoint FiWi transport network architectures with high spectral efficiency X-haul transport for dense areas and 5G/6G hotspots of future mmWave Centralized Radio Access Networks (C-RANs).