학술논문

Dynamic Performance Modeling and Analysis of Power Grids With High Levels of Stochastic and Power Electronic Interfaced Resources
Document Type
Periodical
Source
Proceedings of the IEEE Proc. IEEE Proceedings of the IEEE. 111(7):854-872 Jul, 2023
Subject
General Topics for Engineers
Engineering Profession
Aerospace
Bioengineering
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Geoscience
Nuclear Engineering
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Power, Energy and Industry Applications
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Power system dynamics
Power system stability
Load modeling
Renewable energy sources
Analytical models
Generators
Mathematical models
Dynamic programming
Power electronics
Stochastic processes
Dynamic modeling
power electronics
power system
renewable energy
Language
ISSN
0018-9219
1558-2256
Abstract
This article examines the emerging challenges in modeling and analyzing the electric power system due to the widespread growth of variable renewable energy (VRE), particularly in the form of distributed energy resources (DERs), which are displacing traditional large power plants. Many of these resources are connected to the system through power electronic interfaces, also known as inverter-based resources (IBRs), which are reshaping the system dynamics and lowering the grid strength and inertia. Understanding the dynamic behavior of the power system should be critical to addressing the potential stability concerns, refining the grid requirements, and developing effective and reliable measures among many alternatives. However, conventional methodologies for resource integration and network expansion studies, as well as application-specific electromagnetic transient (EMT) studies, need to be improved. This article thus presents recent academic and industrial efforts to advance the existing approaches, especially by incorporating the uncertainty in model parameters of DERs, variability of VRE, and EMT dynamics of IBRs for the grid planning and operations studies such as the impact of DERs on load modeling and system-wide dynamic performance. In addition, this article showcases recent developments to expand the study boundaries by synergizing the strengths of the industry-accepted approaches along with real system studies for Korea’s electric power systems in particular.