학술논문

Robust Control Strategies for Microgrids: A Review
Document Type
Periodical
Source
IEEE Systems Journal Systems Journal, IEEE. 16(2):2401-2412 Jun, 2022
Subject
Components, Circuits, Devices and Systems
Computing and Processing
Microgrids
Voltage control
Power system stability
Frequency control
Uncertainty
Robust control
Power quality
AC microgrids
DC microgrids
distributed generations (DGs)
hybrid microgrids
nonlinear control
renewable energy resources (RESs)
robust control
Language
ISSN
1932-8184
1937-9234
2373-7816
Abstract
Microgrids consisting of photovoltaic (PV) power plants and wind farms have been widely accepted in power systems for reliability enhancement and power loss reduction. Microgrids are capable of providing voltage and frequency support, improving power quality, and achieving proper power-sharing. To achieve such goals and deal with the nonlinear behavior in such systems, appropriate robust control strategies are required to be adopted. This article presents a comprehensive review of robust control methods for microgrids, including AC, DC, and hybrid microgrids, with different topologies and different types of interconnection to conventional power systems based on recently published research studies. The main control objectives, along with proposed control methods, are comparatively discussed for different types of microgrids. Furthermore, several research gaps in this area related to the scalability, robustness assessment, and evaluation approach are discussed. Recommendations are made that can potentially open new research lines to enhance the effectiveness of robust controllers for AC, DC, and hybrid microgrids.