학술논문

A 96-channel neural stimulation system for driving AIROF microelectrodes
Document Type
Conference
Source
The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Engineering in Medicine and biology Engineering in Medicine and Biology Society, 2004. IEMBS '04. 26th Annual International Conference of the IEEE. 2:4244-4247 2004
Subject
Bioengineering
Microelectrodes
Electrodes
Mirrors
Driver circuits
Application specific integrated circuits
Voltage
Resistors
Control systems
Space vector pulse width modulation
Hardware
AIROF
neural stimulation
anodic bias
multichannel
Language
Abstract
We present the design and testing of a 96-channel stimulation system to drive activated iridium oxide (AIROF) microelectrodes within safe charge-injection limits. Our system improves upon the traditional capacitively coupled, symmetric charge-balanced biphasic stimulation waveform so as to maximize charge-injection capacity without endangering the microelectrodes. It can deliver computer-controlled cathodic current pulse for to up to 96 AIROF microelectrodes and positively bias them during the inter-pulse interval. The stimulation system is comprised of (1) 12 custom-designed PCB boards each hosting an 8-channel ASIC chip, (2) a motherboard to communicate between these 12 boards and the PC, (3) the PC interface equipped with a DIO card and the corresponding software. We plan to use this system in animal experiments for intracortical neural stimulation of implanted electrodes within our visual prosthesis project.