학술논문

Remote Sensing of Sea Surface Salinity From CAROLS L-Band Radiometer in the Gulf of Biscay
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 50(5):1703-1715 May, 2012
Subject
Geoscience
Signal Processing and Analysis
Sea measurements
Antenna measurements
L-band
Ocean temperature
Temperature measurement
Radiometry
Sea surface
microwave radiometry
remote sensing
retrieval method
sea surface salinity (SSS)
Soil Moisture and Ocean Salinity (SMOS)
wind speed
Language
ISSN
0196-2892
1558-0644
Abstract
A renewal of interest for the radiometric L-band Sea Surface Salinity (SSS) remote sensing appeared in the 1990s and led to the Soil Moisture and Ocean Salinity (SMOS) satellite launched in November 2009 and to the Aquarius mission (launched in June 2011). However, due to low signal to noise ratio, retrieving SSS from L-band radiometry is very challenging. In order to validate and improve L-band radiative transfer model and salinity retrieval method used in SMOS data processing, the Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS) was developed. We analyze here a coastal flight (20 May 2009), in the Gulf of Biscay, characterized by strong SSS gradients (28 to 35 pss-78). Extensive in-situ measurements were gathered along the plane track. Brightness temperature $(T_{b})$ integrated over 800 ms correlates well with simulated $T_{b}$ (correlation coefficients between 0.80 and 0.96; standard deviations of the difference of 0.2 K). Over the whole flight, the standard deviation of the difference between CAROLS and in-situ SSS is about 0.3 pss-78 more accurate than SSS fields derived from coastal numerical model or objective analysis. In the northern part of the flight, CAROLS and in-situ SSS agree. In the southern part, the best agreement is found when using only V-polarization measured at 30 $^{\circ}$ incidence angle or when using a multiparameter retrieval assuming large error on $T_{b}$ (suggesting the presence of biases on H-polarization). When compared to high-resolution model SSS, the CAROLS SSS underlines the high SSS temporal variability in river plume and on continental shelf border, and the importance of using realistic river run-offs for modeling coastal SSS.