학술논문

Point2Wave: 3-D Point Cloud to Waveform Translation Using a Conditional Generative Adversarial Network With Dual Discriminators
Document Type
Periodical
Source
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of. 14:11630-11642 2021
Subject
Geoscience
Signal Processing and Analysis
Power, Energy and Industry Applications
Three-dimensional displays
Laser radar
Atmospheric modeling
Superresolution
Deep learning
Generators
Feature extraction
Airborne LiDAR
conditional generative adversarial network
deep learning
full waveform LiDAR
Language
ISSN
1939-1404
2151-1535
Abstract
Since 2017, many deep learning methods for 3-D point clouds observed by airborne LiDAR (airborne 3-D point clouds) have been proposed. Moreover, not only a deep learning method for airborne 3-D point clouds but also a deep learning method for points and their waveforms observed by full-waveform LiDAR (airborne FW data) was proposed. We need to achieve highly accurate land cover classification by using airborne FW data, but open data often only have airborne 3-D point clouds available. Therefore, to improve the performance of land cover classification when using airborne 3-D point clouds published as open data, it is important to restore waveforms from airborne 3-D point clouds. In this article, we propose a deep learning model to translate an airborne 3-D point cloud to airborne FW data (called a point-to-waveform translation model, point2wave) using a conditional generative adversarial net (cGAN). Our point2wave is a cGAN pipeline consisting of a generator that translates the waveform corresponding to each point from the input airborne 3-D point cloud and discriminators that calculate the distance between the translated waveform and the ground truth waveform. Using a set of point clouds and waveforms dataset, we have experimented to translate points into the waveforms by point2wave. Experimental results showed that point2wave could translate waveforms from the airborne 3-D point cloud and the translated fake waveforms achieved nearly the same land cover classification performance as the real waveforms.