학술논문

Effects of Resonance Phenomenon on Voltage Between Conductors in JT-60SA PF Coils
Document Type
Periodical
Source
IEEE Transactions on Applied Superconductivity IEEE Trans. Appl. Supercond. Applied Superconductivity, IEEE Transactions on. 34(5):1-5 Aug, 2024
Subject
Fields, Waves and Electromagnetics
Engineered Materials, Dielectrics and Plasmas
Voltage
Coils
Power supplies
Resistance
Inductance
Conductors
Resonant frequency
Circuit simulation
JT-60SA
PF coil
resonance phenomenon
Language
ISSN
1051-8223
1558-2515
2378-7074
Abstract
The JT-60SA Poloidal Field (PF) coils system comprises four Central Solenoid (CS) modules and six Equilibrium Field (EF) coils, and the cryostat, vacuum vessel (VV), and stabilizing plate (SP) are installed around the PF coil. Evaluating the voltage between conductors in the PF coils is one of the most critical factors in the energized coil operation and the insulation design. The power supply voltage of the PF coils has some frequency components caused by the voltage control system. The resonance phenomena caused by the voltage fluctuations of the power supply induce a non-uniform voltage distribution in the coil. The locally concentrated voltage may exceed the withstand voltage of the insulation, affecting the operation of the JT-60SA. In this study, a circuital model was assembled including four CS modules and six EF coils, to estimate the resonance frequency effect into the coil voltage distribution. In addition, the effects of the cryostat, VV, and SP on the voltage between conductors in the PF coils were evaluated.