학술논문

DS-Depth: Dynamic and Static Depth Estimation via a Fusion Cost Volume
Document Type
Periodical
Source
IEEE Transactions on Circuits and Systems for Video Technology IEEE Trans. Circuits Syst. Video Technol. Circuits and Systems for Video Technology, IEEE Transactions on. 34(4):2564-2576 Apr, 2024
Subject
Components, Circuits, Devices and Systems
Communication, Networking and Broadcast Technologies
Computing and Processing
Signal Processing and Analysis
Costs
Estimation
Solid modeling
Optical flow
Dynamics
Cameras
Vehicle dynamics
Cost volume
depth estimation
monocular
Language
ISSN
1051-8215
1558-2205
Abstract
Self-supervised monocular depth estimation methods typically rely on the reprojection error to capture geometric relationships between successive frames in static environments. However, this assumption does not hold in dynamic objects in scenarios, leading to errors during the view synthesis stage, such as feature mismatch and occlusion, which can significantly reduce the accuracy of the generated depth maps. To address this problem, we propose a novel dynamic cost volume that exploits residual optical flow to describe moving objects, improving incorrectly occluded regions in static cost volumes used in previous work. Nevertheless, the dynamic cost volume inevitably generates extra occlusions and noise, thus we alleviate this by designing a fusion module that makes static and dynamic cost volumes compensate for each other. In other words, occlusion from the static volume is refined by the dynamic volume, and incorrect information from the dynamic volume is eliminated by the static volume. Furthermore, we propose a pyramid distillation loss to reduce photometric error inaccuracy at low resolutions and an adaptive photometric error loss to alleviate the flow direction of the large gradient in the occlusion regions. We conducted extensive experiments on the KITTI and Cityscapes datasets, and the results demonstrate that our model outperforms previously published baselines for self-supervised monocular depth estimation.