학술논문

Variational Quantum Shot-Based Simulations for Waveguide Modes
Document Type
Periodical
Source
IEEE Transactions on Microwave Theory and Techniques IEEE Trans. Microwave Theory Techn. Microwave Theory and Techniques, IEEE Transactions on. 72(4):2084-2094 Apr, 2024
Subject
Fields, Waves and Electromagnetics
Mathematical models
Quantum computing
Electromagnetic waveguides
Qubit
Eigenvalues and eigenfunctions
Computational modeling
Transmission line matrix methods
Hamiltonian simulation
Helmholtz equation
quantum computing
variational quantum eigensolver (VQE)
waveguide modes
Language
ISSN
0018-9480
1557-9670
Abstract
Current quantum computers (QCs) belong to the noisy intermediate-scale quantum (NISQ) class, characterized by noisy qubits, limited qubit capabilities, and limited circuit depth. These limitations have led to the development of hybrid quantum-classical algorithms that split the computational cost between classical and quantum hardware. Among the hybrid algorithms, the variational quantum eigensolver (VQE) is mentioned. The VQE is a variational quantum algorithm designed to estimate the eigenvalues and eigenvectors of a system on universal-gate quantum architectures. A canonical problem in electromagnetics is the computation of eigenmodes within waveguides. Following the finite difference method, the wave equation can be recast as an eigenvalue problem. This work exploits the quantum superposition and entanglement in quantum computing to solve the square waveguide mode problem. This algorithm is expected to demonstrate exponentially efficiency over classical computational techniques as the qubit count increases. The simulations were performed on IBM’s three-qubit quantum simulator, Qasm IBM Simulator. A shot-based simulation was performed considering computationally based measurements of the quantum hardware. The results of the probabilistic read-out, reported in terms of 2-D eigenmode field distributions, are close to ideal values with a few number of qubits, confirming the possibility to exploit the quantum advantage to formulate innovative eigensolvers.