학술논문

Gravity Dam Deformation Prediction Model Based on I-KShape and ZOA-BiLSTM
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:50710-50722 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Dams
Deformation
Predictive models
Deformable models
Prediction algorithms
Monitoring
Clustering algorithms
Spatial databases
Long short term memory
Optimization methods
Deformation prediction
spatial clustering
bidirectional long-short term memory (BiLSTM)
zebra optimization algorithm (ZOA)
Language
ISSN
2169-3536
Abstract
This research proposes a dam deformation prediction model based on clustering partitioning and Bidirectional Long Short-Term Memory (BiLSTM) networks to address the limitations of traditional monitoring models in characterizing the distribution characteristics of deformation zones in concrete gravity dams. The model takes into account the intrinsic correlations among monitoring points and achieves more comprehensive deformation monitoring by integrating multiple feature information. Firstly, the improved K-Shape algorithm, which takes into account the time series features and spatial coordinate relationships, is used to cluster and partition the spatial measurement points to better capture the spatial distribution characteristics of the deformation region. Following that, the model hyperparameters undergo iterative optimization using the ZOA optimization algorithm to enhance overall model performance. Finally, a ZOA-BiLSTM modelling process incorporating the correlation characteristics of multiple measurement points is proposed. After validation by engineering examples, the clustering results coincide with the spatial distribution characteristics of dam deformation. Meanwhile, the prediction model has high accuracy and robustness, and predicts the dam deformation from the multi-measurement point correlation dimension, which provides a new and effective method to monitor the overall safety state of the dam.