학술논문

Security Orchestration and Enforcement in NFV/SDN-Aware UAV Deployments
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:131779-131795 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Security management
Unmanned aerial vehicles
Performance evaluation
Network function virtualization
Monitoring
Internet of Things
IoT
cybersecurity
SDN/NFV
architecture
Language
ISSN
2169-3536
Abstract
Software Defined Network (SDN) and Network Function Virtualization (NFV) are bringing many advantages to optimize and automatize security management at the network edge, enabling the deployment of virtual network security functions (VSFs) in MEC nodes, to strengthen the end-to-end security in IoT environments. The benefits could exploit in mobile MEC nodes on-boarded in Unmanned Aerial Vehicles (UAV), as the UAVs would carry on-demand VSFs to particular physical locations. To that aim, this paper proposes a novel NFV/SDN-based zero-touch security management framework for automatic orchestration, configuration and deployment of lightweight VSF in MEC-UAVs, that considers diverse contextual factors, related to both physical and virtual conditions, to optimize the security orchestration. Our solution aims to deploy on-demand VSFs, such as virtual Firewalls (vFirewalls), vProxies, vIDS (Intrusion Detection Systems) and vAAA, to assist during emerging situations in particular physical locations, protecting and optimizing the managed IoT network, as well as replacing or supporting compromised physical devices like IoT gateways. The proposed solution has been implemented, deployed and evaluated in a real testbed with real drones, showing its feasibility and performance.