학술논문

Boosting Model Inversion Attacks With Adversarial Examples
Document Type
Periodical
Source
IEEE Transactions on Dependable and Secure Computing IEEE Trans. Dependable and Secure Comput. Dependable and Secure Computing, IEEE Transactions on. 21(3):1451-1468 Jun, 2024
Subject
Computing and Processing
Data models
Image reconstruction
Task analysis
Training data
Training
Predictive models
Computational modeling
Adversarial examples
machine learning
model inversion attacks
Language
ISSN
1545-5971
1941-0018
2160-9209
Abstract
Model inversion attacks involve reconstructing the training data of a target model, which raises serious privacy concerns for machine learning models. However, these attacks, especially learning-based methods, are likely to suffer from low attack accuracy, i.e., low classification accuracy of these reconstructed data by machine learning classifiers. Recent studies showed an alternative strategy of model inversion attacks, GAN-based optimization, can improve the attack accuracy effectively. However, these series of GAN-based attacks reconstruct only class-representative training data for a class, whereas learning-based attacks can reconstruct diverse data for different training data in each class. Hence, in this paper, we propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting. First, we regularize the training process of the attack model with an added semantic loss function and, second, we inject adversarial examples into the training data to increase the diversity of the class-related parts (i.e., he essential features for classification tasks) in training data. This scheme guides the attack model to pay more attention to the class-related parts of the original data during the data reconstruction process. The experimental results show that our method greatly boosts the performance of existing learning-based model inversion attacks. Even when no extra queries to the target model are allowed, the approach can still improve the attack accuracy of reconstructed data. This new attack shows that the severity of the threat from learning-based model inversion adversaries is underestimated and more robust defenses are required.