학술논문

Learning Hierarchical Graph Neural Networks for Image Clustering
Document Type
Conference
Source
2021 IEEE/CVF International Conference on Computer Vision (ICCV) ICCV Computer Vision (ICCV), 2021 IEEE/CVF International Conference on. :3447-3457 Oct, 2021
Subject
Computing and Processing
Training
Couplings
Computer vision
Computational modeling
Predictive models
Prediction algorithms
Graph neural networks
Faces
Recognition and classification
Language
ISSN
2380-7504
Abstract
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities using a training set of images annotated with labels belonging to a disjoint set of identities. Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level. Unlike fully unsupervised hierarchical clustering, the choice of grouping and complexity criteria stems naturally from supervision in the training set. The resulting method, Hi-LANDER, achieves an average of 49% improvement in F-score and 7% increase in Normalized Mutual Information (NMI) relative to current GNN-based clustering algorithms. Additionally, state-of-the-art GNN-based methods rely on separate models to predict linkage probabilities and node densities as intermediate steps of the clustering process. In contrast, our unified framework achieves a three-fold decrease in computational cost. Our training and inference code are released 1 .