학술논문

Miniaturization of 2 × 4 90-Degree Hybrid Optical Couplers
Document Type
Periodical
Source
IEEE Journal of Quantum Electronics IEEE J. Quantum Electron. Quantum Electronics, IEEE Journal of. 59(3):1-9 Jun, 2023
Subject
Engineered Materials, Dielectrics and Plasmas
Photonics and Electrooptics
Performance evaluation
Couplers
Optical coupling
Indium phosphide
III-V semiconductor materials
Photonics
Local oscillators
Multimode waveguides
integrated optics
optical coupling
photodetectors
phase detection
optical signal detection
indium compounds
waveguide components
optical waveguide components
optical strip waveguide components
Language
ISSN
0018-9197
1558-1713
Abstract
In this work we study the limits of miniaturization of a 90-degree hybrid coupler working in the L, C and S bands, with respect to a number of performance parameters aimed at its application for balanced detection. We investigate the main effects responsible for the degradation of the performance of the devices during miniaturization, and establish the minimal dimension that such devices can have without significant degradation for photonic applications such as balanced detection. The miniaturized device in InP generic technology has a footprint of only $2200\mu \text{m}^{2}$ , more than 5 times smaller than the conventional device used as reference. The scaling approach is based on the use of the number of propagating modes which are sustained in both the miniaturized MMI and port waveguides as scaling parameters. This approach allows us to generalize the miniaturization problem from a specific platform and offers a methodology which is flexible and transferable to multiple platforms. We tested the scaling methodology based on the number of modes in other platforms commonly used in integrated photonics, such as Si/SiO2(SOI), TriPleX or polymer platforms, obtaining comparable results and proving the universality of our approach, finally we performed a fabrication tolerance analysis of the miniaturized devices.