학술논문

Comfort Wearables for In-Flight Sitting Posture Recognition
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:103659-103668 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Wearable computers
Sensors
Wearable sensors
Accelerometers
Ergonomics
Magnetic heads
Losse-fit
tight-fit
ergonomics
accelerometer
IMU
wearability
Language
ISSN
2169-3536
Abstract
Wearables are used to recognize human activities in various applications. However, there is limited evidence on the comfort feelings in using wearables, which is crucial for the adoption and long-term engagement of users in those applications. In this paper, we propose the concept of comfort wearables in the context of in-flight posture recognition. A comfort wearable and a tight-fit version, using identical hardware and software architecture, were prototyped and tested by 35 participants in a Boeing 737 cabin. During the usage of each wearable, participants were asked to perform seven frequently observed in-flight sitting postures and report their overall comfort/discomfort afterwards. A multilayer perceptron neural network was used to classify those activities. Experiment results indicated that participants appreciated the comfort wearable, rating it with significantly higher comfort scores and lower discomfort scores. Cross-validation results also revealed that using the comfort wearable achieved even better accuracy (74.8%) than using the tight-fit wearable (65.8%) in posture recognition. Outcomes of the study demonstrate that ergonomic design and technical accuracy are not competing factors in the wearable design and highlight the opportunities for designing and using comfort wearables in broader contexts.