학술논문

Six-Degree-of-Freedom Localization Under Multiple Permanent Magnets Actuation
Document Type
Periodical
Source
IEEE Robotics and Automation Letters IEEE Robot. Autom. Lett. Robotics and Automation Letters, IEEE. 8(6):3422-3429 Jun, 2023
Subject
Robotics and Control Systems
Computing and Processing
Components, Circuits, Devices and Systems
Magnetic resonance imaging
Location awareness
Robot sensing systems
Accelerometers
Sensors
Permanent magnets
Noise measurement
Medical robots and systems
localization
magnetic actuation
state estimation
Kalman filter
Language
ISSN
2377-3766
2377-3774
Abstract
Localization of magnetically actuated medical robots is essential for accurate actuation, closed loop control and delivery of functionality. Despite extensive progress in the use of magnetic field and inertial measurements for pose estimation, these have been either under single external permanent magnet actuation or coil systems. With the advent of new magnetic actuation systems comprised of multiple external permanent magnets for increased control and manipulability, new localization techniques are necessary to account for and leverage the additional magnetic field sources. In this letter, we introduce a novel magnetic localization technique in the Special Euclidean Group SE(3) for multiple external permanent magnetic field actuation and control systems. The method relies on a milli-meter scale three-dimensional accelerometer and a three-dimensional magnetic field sensor and is able to estimate the full 6 $^{\circ }$-of-freedom pose without any prior pose information. We demonstrated the localization system with two external permanent magnets and achieved localization errors of 8.5 $\pm$ 2.4 mm in position norm and 3.7 $\pm$ 3.6$^{\circ }$ in orientation, across a cubic workspace with 20 cm length.