학술논문

A Facet-Based Numerical Model for Simulating SAR Altimeter Echoes From Heterogeneous Sea Ice Surfaces
Document Type
Periodical
Source
IEEE Transactions on Geoscience and Remote Sensing IEEE Trans. Geosci. Remote Sensing Geoscience and Remote Sensing, IEEE Transactions on. 57(7):4164-4180 Jul, 2019
Subject
Geoscience
Signal Processing and Analysis
Sea surface
Surface topography
Rough surfaces
Surface roughness
Sea ice
Numerical models
Numerical analysis
modeling
radar altimetry
radar scattering
sea ice
snow
synthetic aperture radar (SAR)
Language
ISSN
0196-2892
1558-0644
Abstract
Cryosat-2 has provided measurements of pan-Arctic sea ice thickness since 2010 with unprecedented spatial coverage and frequency. However, it remains uncertain how the Ku-band radar interacts with the vast range of scatterers that can be present within the satellite footprint, including sea ice with varying physical properties and multiscale roughness, snow cover, and leads. Here, we present a numerical model designed to simulate delay-Doppler synthetic aperture radar (SAR) altimeter echoes from snow-covered sea ice, such as those detected by Cryosat-2. Backscattered echoes are simulated directly from triangular facet-based models of actual sea ice topography generated from Operation IceBridge Airborne Topographic Mapper data, as well as virtual statistical models simulated artificially. We use these waveform simulations to investigate the sensitivity of SAR altimeter echoes to variations in satellite parameters (height, pitch, and roll) and sea ice properties (physical properties, roughness, and presence of water). We show that the conventional Gaussian assumption for sea ice surface roughness may be introducing significant error into the Cryosat-2 waveform retracking process. Compared to a more representative lognormal surface, an echo simulated from a Gaussian surface with rms roughness height of 0.2 m underestimates the ice freeboard by 5 cm—potentially underestimating sea ice thickness by around 50 cm. We present a set of “ideal” waveform shape parameters simulated for sea ice and leads to inform existing waveform classification techniques. This model will ultimately be used to improve retrievals of key sea ice properties, including freeboard, surface roughness, and snow depth, from SAR altimeter observations.